基于灰度-单元差分共生矩阵的医学图像的检索与分类
【摘要】:医学图像的检索与分类技术在计算机辅助诊断中具有重要作用.图像特征提取是基于内容的图像检索(CBIR)与分类中的关键技术之一.因此,如何有效地提取能够反映图像高层语义的低层特征对于医学图像的检索与分类是至关重要的.针对这个问题,提出使用灰度-单元差分共生矩阵提取纹理特征.在此基础上,使用欧氏距离和支持向量机(SVM)进行图像的检索与分类.实验结果表明,灰度-单元差分共生矩阵对于医学图像的检索与分类是有效的.
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|