A fast image matching method based on high-dimensional combined features
【摘要】:In recent years,image matching navigation technology has been developing rapidly,but it is hard to meet the actual requirement of real-time.In this paper,a fast image matching method based on high-dimensional combined features is proposed,and K-dimensional tree(KD-tree) and particle swarm optimization(PSO) algorithm are introduced to improve the matching speed.At first we present a new concept of high-dimensional combined feature,and construct the features of two adjacent frames in sequence images as matching primitives.Then the position relation of two adjacent frame images can be determined according to the geometric constraints among the features.Finally,we introduce KD-tree and PSO algorithm to optimize the search process.The simulation results show that the matching is still completed at the rotation angle of-5 ° to 5 ° and the scale factor of 0.9 to1.1,meanwhile,the time consumption is within 1 second.As a conclusion,the algorithm can effectively improve the real-time performance of image matching,and is robust to rotation and scale changes,which satisfies the requirements of navigation system.
|
|
|
|
1 |
苏小红
,张田文
,郭茂祖
,王亚东;Application of nonlinear color matching model to four-color ink-jet printing[J];Journal of Harbin Institute of Technology;2002年03期 |
2 |
;Scene matching based on non-linear pre-processing on referenceimage and sensed image[J];Journal of Systems Engineering and Electronics;2005年02期 |
3 |
蒋文斌,周曼丽,彭复员,许毅平;Novel block-matching algorithms by subsampling both search candidates and pixels[J];Journal of Systems Engineering and Electronics;2005年03期 |
4 |
金伟其;陈艳;王岭雪);刘斌;刘崇亮;沈亚中;张桂清;;Video Image Block-matching Motion Estimation Algorithm Based on Two-step Search[J];Journal of Measurement Science and Instrumentation;2010年03期 |
5 |
;A stochastic policy search model for matching behavior[J];Science China(Information Sciences);2011年07期 |
6 |
;New algorithm for optimization of computer color matching[J];蒙自师范高等专科学校学报;1998年S1期 |
7 |
田玉龙,吴伟仁,田金文,柳健;Image matching navigation based on fuzzy information[J];Journal of Harbin Institute of Technology;2003年04期 |
8 |
管业鹏,顾伟康;A matching algorithm based on hybrid matricesconsisting of reference differences and disparities[J];Journal of Zhejiang University Science;2004年07期 |
9 |
刘浩;张文军;蔡骏;;A fast block-matching algorithm based on variable shape search[J];Journal of Zhejiang University Science A(Science in Engineering);2006年02期 |
10 |
陶唐飞;韩崇昭;吴艳琪;康欣;;Motion estimation based on an improved block matching technique[J];Chinese Optics Letters;2006年04期 |
11 |
;New multi-pattern matching algorithm[J];Journal of Systems Engineering and Electronics;2006年02期 |
12 |
孙梅玉;唐漾;方建安;;An Improving Indexing Approach on Time Series Based on Minimum Bounding Rectangle[J];Journal of Donghua University(English Edition);2009年01期 |
13 |
Ja Choon Koo;Hyouk Ryeol Choi;;Improved block matching approach to fast disparity estimation[J];Journal of Systems Engineering and Electronics;2009年06期 |
14 |
延伟东;田铮;潘璐璐;丁明涛;;Spectral feature matching based on partial least squares[J];Chinese Optics Letters;2009年03期 |
15 |
;A hybrid matching method for geospatial services in a composition-oriented environment[J];Science China(Technological Sciences);2010年S1期 |
16 |
;Productivity matching and quantitative prediction of coalbed methane wells based on BP neural network[J];Science China(Technological Sciences);2011年05期 |
17 |
王俊丽;丁志军;侯玉兵;;Automatic Web services composition algorithm based on optimal matching[J];Journal of Central South University of Technology;2011年04期 |
18 |
李皞;马泳;梁琨;余寅;;Rapid matching algorithm for hyperspectral image based on norm sifting[J];Chinese Optics Letters;2012年01期 |
19 |
;Displacement residual based DDM matching algorithm[J];Science China(Information Sciences);2012年09期 |
20 |
霍炬;杨宁;曹茂永;杨明;;A reliable algorithm for image matching based on SIFT[J];Journal of Harbin Institute of Technology;2012年04期 |
|
|
|
|
|
1 |
毋伟;[D];郑州大学;2003年 |
2 |
王勤;图的导出匹配可扩性[D];郑州大学;2000年 |
|