Robust Linear Estimation with Second Order Statistics Information Uncertainty
【摘要】:正In this paper,we develop a robust linear estimation(RLE) in presence of a priori statistical information with uncertainties without a model of a with uncertainty but without assumption of model of parameter under estimation and observation. We assume that a random vector x is observed through a nonlinear(or linear) transformation y = f(x,w),where w is noise. We consider the case that there are some uncertainties in second order statistical information of x and y,i.e.,C_x,C_(yx) and C_y and propose an optimal minimax linear estimator that minimizes worst case mean-squared error(MSE) in the region of uncertainty. The minimax estimator can be formulated as a solution to a semideflnite programming problem(SDP).We consider both the Frobenius norm and spectral norm of the uncertainty constraints,leading to the two corresponding robust linear estimators. Finally,Numerical examples are given which illustrates the effectiveness of the proposed estimators.
|
|
|
|
1 |
丛秋波;;无需远端采样导线的虚拟远端采样控制器[J];电子设计技术;2010年06期 |
2 |
陆楠;;Linear30周年 总结成功经验[J];电子设计技术;2011年07期 |
3 |
Michael Whitaker;;利用环境产生电能 创造无电池无线传感器[J];电子产品世界;2010年06期 |
4 |
文亮;;Linux中软RAID程序的机制分析[J];武汉工程职业技术学院学报;2006年01期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|