Motor imagery electroencephalogram de-noising method based on EEMD and improved wavelet threshold
【摘要】:In order to eliminate the noise mixed in Motor Imagery Electroencephalogram(MI EEG) and retain useful MI EEG information, the paper puts forward a new MI EEG de-noising method based on ensemble empirical mode decomposition(EEMD) and improved wavelet threshold method. New threshold function and threshold selection rules are introduced to the improved wavelet threshold de-noising method. Firstly, the MI EEG signal is decomposed by the EEMD. Then using the improved wavelet threshold method to de-noise the high-frequency Intrinsic Mode Function(IMF) components. Finally, the processed high frequency IMF components and low frequency IMF components are reconstructed to get the de-noised signal. The experimental results reveal that the proposed de-noising algorithm has perspective of higher SNR and lower RMSE compared to the other methods, including the pure EEMD, the pure improved wavelet threshold method, and the improved wavelet threshold method based on EMD.
|
|
|
|
1 |
Firas Al Omari;[D];江苏大学;2014年 |
2 |
Eidam Ahmed Hebiel Ahmed;[D];华中农业大学;2013年 |
3 |
Wu Zhiqiang;[D];中国海洋大学;2009年 |
4 |
Isra'a Abdul-Ameer Abdul-Jabbar(伊娜);[D];合肥工业大学;2014年 |
5 |
Dileep Kumar;基于小波分析和神经网络的供水管网管内泄漏声检测方法研究[D];浙江大学;2018年 |
6 |
陆智萍;稳定与不稳定长记忆随机过程分析:估计、应用及预测[D];华东师范大学;2010年 |
|