一种基于属性加权的不确定K-means聚类算法
【摘要】:基于不确定数据进行数据挖掘和知识发现的研究由于更加符合客观实际而逐渐成为近年来研究的热点.而在K-means算法聚类的过程中,样本空间各维度对聚类效果贡献的价值不同也成为现实应用中不可回避的问题.为了得到更加客观、真实的聚类结果,在经典K-means算法的基础上引入了属性的权值并重新构造了针对不确定数据集的聚类算法,并通过实验证明了该算法的有效性.
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||
|
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||
|