收藏本站
《数学·力学·物理学·高新技术交叉研究进展——2010(13)卷》2010年
收藏 | 手机打开
二维码
手机客户端打开本文

关于非负曲率凯勒流形单值化定理的一个注记

焦振华  邓琴  
【摘要】:本文利用Ni-Shi-Tam、Ni-Tam和Chau-Tam新近的几个结果,对具有非负曲率凯勒流形的单值化问题进行了探讨,并对早先Mok-Siu-Yau的一个定理给予了推广。

手机知网App
【共引文献】
中国期刊全文数据库 前5条
1 ;Geometry of Ricci Solitons[J];Chinese Annals of Mathematics;2006年02期
2 焦振华;傅小勇;;VOLUME GROWTH ESTIMATES OF MANIFOLDS WITH NONNEGATIVE CURVATURE OUTSIDE A COMPACT SET[J];Acta Mathematica Scientia;2008年01期
3 焦振华;;非负曲率流形的体积增长估计[J];数学学报;2006年06期
4 ;Gap Theorem on Complete Noncompact Riemannian Manifold[J];数学研究与评论;2011年03期
5 阮其华,陈志华;标量曲率衰竭的黎曼流形上的空隙定理[J];同济大学学报(自然科学版);2005年10期
中国重要会议论文全文数据库 前1条
1 傅小勇;焦振华;;具正曲率Khler流形的体积增长估计(英文)[A];数学·力学·物理学·高新技术研究进展——2006(11)卷——中国数学力学物理学高新技术交叉研究会第11届学术研讨会论文集[C];2006年
中国博士学位论文全文数据库 前1条
1 张行宇;高新技术企业投资价值评估研究[D];合肥工业大学;2009年
中国硕士学位论文全文数据库 前1条
1 郭华勤;国内旅游内上市公司投资价值测度研究[D];兰州理工大学;2011年
【相似文献】
中国期刊全文数据库 前10条
1 詹华税;完备非紧具非负曲率流形之拓扑结构[J];数学研究与评论;1999年S1期
2 詹华税;具非负曲率完备非紧曲面的几何性质[J];数学研究与评论;2001年02期
3 詹华税;只有一个B-函数的完备非紧具非负曲率流形[J];集美大学学报(自然科学版);2000年03期
4 詹华税,梁益兴;具非负曲率的黎曼流形[J];厦门大学学报(自然科学版);1993年06期
5 詹华税;核心的余维数为1的具非负曲率完备非紧黎曼流形[J];数学研究;2002年01期
6 张宗劳;非负曲率完备流形的一些性质[J];数学年刊A辑(中文版);1989年01期
7 詹华税;可定向的具非负曲率完备非紧黎曼流形[J];数学进展;2001年01期
8 张维弢;R~n中具有非负曲率的封闭超曲面的充要条件[J];数学进展;1982年02期
9 许文彬;;具非负曲率完备非紧黎曼流形的闭测地线[J];厦门大学学报(自然科学版);2010年02期
10 詹华税;;具非负曲率的完备非紧黎曼流形[J];厦门大学学报(自然科学版);2006年06期
中国重要会议论文全文数据库 前1条
1 焦振华;邓琴;;关于非负曲率凯勒流形单值化定理的一个注记[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年
中国博士学位论文全文数据库 前2条
1 高翔;几何分析中若干问题的研究[D];华东师范大学;2011年
2 殷浩;调和映射边界正则性和曲面上归一化的Ricci Flow[D];华东师范大学;2007年
中国硕士学位论文全文数据库 前3条
1 王欢;关于一族复Monge-Ampère方程的解的振荡估计[D];华东师范大学;2012年
2 官永辉;庞加莱猜想证明的概述[D];中国科学技术大学;2011年
3 梁津津;在Ricci-调和流下特征值及能量泛函的单调性[D];复旦大学;2012年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026