一种基于半监督学习的应用层流量分类方法
【摘要】:基于应用层的流量分类在用户行为识别、网络带宽管理等方面有着十分重要的应用.将机器学习应用到应用层流量分类问题中.首先提出了一种基于熵函数的组合式特征选择算法,提取了5种TCP连接的特征.针对监督学习中无法识别新流量类型的问题,提出了一种基于半监督学习的流量分类算法.实验结果表明,算法的检测率优于Kmeans方法.在少量标记样本的情况下,随着未标记样本数增加,算法的检测率在增加.
【相似文献】 | ||
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|