基于面积坐标的四边形4结点平面膜元解析刚度矩阵式研究
【摘要】:四边形面积坐标(QAC)方法是新近提出的构造二维有限元模型的工具。与传统的等参坐标方法相比,采用四边形面积坐标构造的单元对网格畸变不敏感,四边形4结点膜元AGQ6-I就是其中一个典型模型。从理论上讲,利用面积坐标的积分公式可以推导出单元刚度矩阵的解析式,这对有限元计算十分有利。本文将四边形面积坐标的计算法则引入到符号运算软件中,推导并首次得到单元AGQ6-I的刚度矩阵的解析表达式,进而编制了这些解析式的FORTRAN子程序。通过算例比较了面积坐标单刚解析式、数值积分方法以及等参元的计算效率和精度。结果表明基于面积坐标方法的单元刚度矩阵解析式在这两方面确实具有明显的优辨。
|
|
|
|
1 |
司海宝;;计算结构力学与有限单元法课程教学的思考[J];安徽工业大学学报(社会科学版);2011年03期 |
2 |
钟阳;钟志华;李光耀;孙光永;徐峰祥;;机械系统接触碰撞界面显式计算的算法综述[J];机械工程学报;2011年13期 |
3 |
韦尧兵;刘俭辉;王风涛;;304不锈钢紧凑拉伸裂尖应力强度因子有限元分析[J];机械与电子;2011年07期 |
4 |
;[J];;年期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|