收藏本站
《第36届中国控制会议论文集(D)》2017年
收藏 | 手机打开
二维码
手机客户端打开本文

Active Contour Model via Local and Global Intensity Information for Image Segmentation

Shuai Yuan  Patrice Monkam  Siqi Li  Haolin Song  Feng Zhang  
【摘要】:Active contour models(ACM) have been proven to be the most promising model in solving the different problems encountered in image segmentation.This paper proposes a new region-based active contour model for level set formulation in which the energy function is formulated using both local and global intensity fitting terms.The generalized Gaussian distribution has been used as the kernel function of the local binary fitting information.The evolution equation consists of three terms:the global term,the local term and the regularization term.We have introduced the Laplace operator into the regularization term to regularize the level set function during its evolution process,which efficiently eliminates the costly re-initialization procedure.Due to the definition of local image intensities,the proposed model is able to deal with intensity inhomogeneity.The proposed model has been successfully applied to many synthetic and real-world images and the experimental results clearly show some improvement on both efficiency and accuracy compared with some popular methods.

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 ;A regularization method in the electromagnetic inverse scattering problem[J];Progress in Natural Science;2007年03期
2 ;Sparse SAR imaging based on L_(1/2) regularization[J];Science China(Information Sciences);2012年08期
3 ;Information flow and controlling in regularization inversion of quantitative remote sensing[J];Science in China(Series D:Earth Sciences);2005年01期
4 ;A fast and adaptive method for complex-valued SAR image denoising based on l_k norm regularization[J];Science in China(Series F:Information Sciences);2009年01期
5 ;Effect of regularization parameters on geophysical reconstruction[J];Petroleum Science;2009年02期
6 ;Image decomposition using adaptive regularization and div(BMO)[J];Journal of Systems Engineering and Electronics;2011年02期
7 黄淑英;杨勇;王国宇;;Anisotropic fourth-order diffusion regularization for multiframe super-resolution reconstruction[J];Journal of Central South University;2013年11期
8 OIWA Hidekazu;MATSUSHIMA Shin;NAKAGAWA Hiroshi;;Feature-aware regularization for sparse online learning[J];Science China(Information Sciences);2014年05期
9 ;Inductive transfer learning for unlabeled target-domain via hybrid regularization[J];Chinese Science Bulletin;2009年14期
10 ;A fast algorithm for color image enhancement with total variation regularization[J];Science China(Information Sciences);2010年09期
中国重要会议论文全文数据库 前8条
1 Xizi Song;Yanbin Xu;Feng Dong;;An Improved Total Variation Regularization Method for Electrical Resistance Tomography[A];2013年中国智能自动化学术会议论文集(第一分册)[C];2013年
2 ;Chapter 1 Inverse Problems,Optimization and Regularization:A Multi-Disciplinary Subject[A];中国科学院地质与地球物理研究所第十届(2010年度)学术年会论文集(中)[C];2011年
3 Yanfei Wang;Peng Liu;Zhenhua Li;Tao Sun;Changchun Yang;Qingsheng Zheng;;Data regularization using Gaussian beams decomposition and sparse norms[A];中国科学院地质与地球物理研究所2013年度(第13届)学术论文汇编——油气资源研究室[C];2014年
4 ;Hybrid regularization methods for seismic reflectivity inversion[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(下)[C];2012年
5 ;Numerical Simulation of Bioluminescence Tomography[A];第二十七届中国控制会议论文集[C];2008年
6 YANFEI WANG;CHANGCHUN YANG;JINGJIE CAO;;ON TIKHONOV REGULARIZATION AND COMPRESSIVE SENSING FOR SEISMIC SIGNAL PROCESSING[A];中国科学院地质与地球物理研究所2012年度(第12届)学术论文汇编——油气资源研究室[C];2013年
7 Yanfei Wang;;SPARSE OPTIMIZATION METHODS FOR SEISMIC WAVEFIELDS RECOVERY[A];中国科学院地质与地球物理研究所2012年度(第12届)学术论文汇编——油气资源研究室[C];2013年
8 ;Optimal Regularization Parameters Selection for Laplacian Support Vector Machine[A];第二十七届中国控制会议论文集[C];2008年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026