Fault Pattern Recognition of Rolling Bearings Based on Wavelet Packet and Support Vector Machine
【摘要】:The method of fault diagnosis of rolling bearings based on wavelet packet transform and support vector machine is presented.The key to fault bearings diagnosis is feature extracting and feature classifying.Wavelet packet transform,as a new technique of signal processing,possesses excellent characteristic of time-frequency localization and is suitable for analyzing the time-varying or transient signals.Support vector machine is capable of pattern recognition and nonlinear regression.According to the frequency domain feature of rolling bearing vibration signal,energy eigenvector of frequency domain is extracted using wavelet packet transform method.Fault pattern of rolling bearing is recognized using support vector machine multiple fault classifier.Theory and experiment show that such method is available to recognize the fault pattern accurately and provide a new approach to intelligent fault diagnosis.
|
|
|
|
1 |
贾振元,刘侃,刘顺福;远程控制快速成型加工技术研究[J];大连理工大学学报;2001年04期 |
2 |
;[J];;年期 |
3 |
;[J];;年期 |
4 |
;[J];;年期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|