收藏本站
《第二十六届中国控制会议论文集》 2007年
收藏 | 手机打开
二维码
手机客户端打开本文

序列最小优化算法在电力系统短期负荷预测中的应用

周倩  翟永杰  韩璞  
【摘要】:本文提出了一种基于序列最小优化算法(SMO)理论的电力系统短期负荷预测方法。该方法引入限定记忆思想,进行适当参数选择并改进了SMO算法。SMO算法的特点是在保证收敛的情况下把支持向量机中的二次规划问题分解为一系列子块问题来解决。而改进的SMO算法能够使块数据的长度始终保持不变,并且经实验证明,该算法能够使短期负荷预测具有很好的预测精度。

知网文化
【相似文献】
中国期刊全文数据库 前20条
1 周虎;江岳春;陈旭;黄珊;彭信淞;;模糊聚类分析和代数算法结合的短期负荷预测[J];电力系统及其自动化学报;2011年03期
2 郭华安;加玛力汗·库马什;常喜强;姚秀萍;;电力系统短期负荷预测精度研究[J];科技资讯;2011年21期
3 袁斌;方芩璐;罗滇生;王娟;;短期负荷预测中对输入-输出关联度的改进[J];电力系统及其自动化学报;2011年03期
4 代小红;王光利;;L-M优化BP算法在短期负荷预测中的应用[J];计算机科学;2011年07期
5 李慧;王来运;;基于混沌蚁群算法的电力短期负荷预测[J];北京信息科技大学学报(自然科学版);2011年04期
6 张红;张建红;康岩松;;基于GA的改进SVM算法对RBF优化算法在短期负荷预测中的应用[J];长春工程学院学报(自然科学版);2011年02期
7 刘彬;王红蕾;;贵州输配电网短期负荷可行性预测[J];机械与电子;2010年S1期
8 黄昕颖;;高阶灰色预测模型在短期电力负荷预测中的应用研究[J];机电信息;2011年18期
9 彭显刚;胡松峰;吕大勇;;基于RBF神经网络的短期负荷预测方法综述[J];电力系统保护与控制;2011年17期
10 王小波;刘德强;;基于人工神经网络的短期负荷预测的研究[J];电力学报;2011年04期
11 张伟;徐超;韩华;张智晟;;电力系统短期负荷预测组合NN模型的研究与应用[J];青岛大学学报(工程技术版);2011年02期
12 王奔;冷北雪;张喜海;单翀皞;从振;;支持向量机在短期负荷预测中的应用概况[J];电力系统及其自动化学报;2011年04期
13 陈新宇;康重庆;陈敏杰;;极值负荷及其出现时刻的概率化预测[J];中国电机工程学报;2011年22期
14 全戈;黄民翔;周苗菲;;用于多小水电地区日发电负荷预测的新型组合预测法[J];能源工程;2011年04期
15 黄元生;邓佳佳;苑珍珍;;基于ARMA误差修正和自适应粒子群优化的SVM短期负荷预测[J];电力系统保护与控制;2011年14期
16 陈金赛;张新波;;基于改进BP人工神经网络的电力负荷预测[J];杭州电子科技大学学报;2011年04期
17 柳燕煌;黄立勤;;云计算环境的并行支持向量机[J];南阳理工学院学报;2011年02期
18 李惠玲;白晓民;;电动汽车充电对配电网的影响及对策[J];电力系统自动化;2011年17期
19 ;[J];;年期
20 ;[J];;年期
中国重要会议论文全文数据库 前10条
1 周倩;翟永杰;韩璞;;序列最小优化算法在电力系统短期负荷预测中的应用[A];第二十六届中国控制会议论文集[C];2007年
2 胡松峰;彭显刚;;电网短期负荷预测方法综述[A];武汉(南方九省)电工理论学会第22届学术年会、河南省电工技术学会年会论文集[C];2010年
3 盛琼;顾泽;骆丽楠;;基于实时气象要素的湖州短期负荷预测研究[A];第八届长三角气象科技发展论坛论文集[C];2011年
4 邢晓哲;刘玉良;丁旭元;;考虑端点效应的经验模态分解在短期负荷预测中的应用[A];低碳经济与科学发展——吉林省第六届科学技术学术年会论文集[C];2010年
5 刘念;徐成华;;利用RBF对农村低压台区进行短期负荷预测[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年
6 杜欣慧;张岭;毕艳华;;采用自适应神经网络进行短期负荷预测[A];2004全国测控、计量与仪器仪表学术年会论文集(下册)[C];2004年
7 田晓;颜勇;孔凡坊;顾德英;;新型神经网络在短期负荷预测中的应用研究[A];山东电机工程学会第五届供电专业学术交流会论文集[C];2008年
8 李婷;徐搏;刘青山;刘俊男;辛鹏;;基于EMD与SVM及GA相结合的短期负荷预测[A];低碳经济与科学发展——吉林省第六届科学技术学术年会论文集[C];2010年
9 郭恒;罗可;唐贤瑛;;基于自适应神经模糊推理系统(ANFIS)的电力系统短期负荷预测[A];第十届全国电工数学学术年会论文集[C];2005年
10 高荣;刘晓华;;短期负荷预测的模糊聚类多支持向量机模型研究[A];2009中国控制与决策会议论文集(2)[C];2009年
中国重要报纸全文数据库 前9条
1 通讯员 池长斌;宁夏电力短期负荷预测保持领先[N];中国电力报;2011年
2 张树斌 范明;湖北电网中、短期负荷预测系统显神威[N];华中电力报;2001年
3 王海亚;负荷预测的几种方法及特点[N];黔西南日报;2008年
4 通讯员池长斌;宁夏电网短期负荷预测西北第一[N];中国电力报;2011年
5 本报记者 林海宇;对迎峰度夏和奥运保电工作再部署再动员[N];华东电力报;2008年
6 宋鹏涛;华北电网多措并举保国庆用电[N];华北电力报;2005年
7 曹琰陈也清;华中电网用电负荷创新高[N];国家电网报;2008年
8 记者 龙建平;“黄金周”广东电网两不误[N];中国电力报;2006年
9 崔春华;西北电网公司积极调度缓解我省供电紧张[N];陕西日报;2008年
中国博士学位论文全文数据库 前10条
1 王硕禾;基于短期负荷预测技术的电能控制系统研究[D];天津大学;2009年
2 张智晟;基于多元理论融合的电力系统短期负荷预测的研究[D];天津大学;2004年
3 程其云;基于数据挖掘的电力短期负荷预测模型及方法的研究[D];重庆大学;2004年
4 杨奎河;短期电力负荷的智能化预测方法研究[D];西安电子科技大学;2004年
5 雷绍兰;基于电力负荷时间序列混沌特性的短期负荷预测方法研究[D];重庆大学;2005年
6 卢芸;短期电力负荷预测关键问题与方法的研究[D];沈阳工业大学;2007年
7 杨尚东;发电商市场预测与竞价决策优化新方法研究[D];华北电力大学(北京);2007年
8 孙春顺;风力发电系统运行与控制方法研究[D];湖南大学;2008年
9 王书舟;支持向量机方法及其应用研究[D];哈尔滨工业大学;2009年
10 郑永康;相空间重构与支持向量机结合的短期负荷预测研究[D];西南交通大学;2008年
中国硕士学位论文全文数据库 前10条
1 朱焕荣;遗传规划在电力短期负荷预测中的应用[D];河北农业大学;2011年
2 刘凯;基于改进BP神经网络的短期负荷预测研究[D];河海大学;2005年
3 冷北雪;基于支持向量机的电力系统短期负荷预测[D];西南交通大学;2010年
4 刘继胜;基于人工神经网络的电力系统短期负荷预测的应用分析[D];华北电力大学(北京);2011年
5 赵福成;基于人工神经网络的短期负荷预测[D];华北电力(北京)大学;2002年
6 李海东;人工智能方法在电力系统短期负荷预测中的研究[D];辽宁工程技术大学;2002年
7 陈晨;基于WNN神经网络的短期负荷预测[D];西安理工大学;2010年
8 白波;基于加权LS-SVM的短期负荷预测研究[D];东北电力大学;2011年
9 胡启元;针对电力系统短期负荷预测的研究[D];四川大学;2004年
10 冷喜武;支持向量回归在短期负荷预测中的应用研究[D];华北电力大学(河北);2008年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978