收藏本站
《第25届中国控制会议论文集(下册)》2006年
收藏 | 手机打开
二维码
手机客户端打开本文

支持向量机的增量学习算法及其在多类分类问题中的应用

赵莹  万福永  
【摘要】:支持向量机是一种新的统计学习方法。本文分析了支持向量机的原理与特性,并在此基础上提出了一种增量学习方法。把这种方法应用于多类分类问题,实验结果表明,这种方法在保证测试精度的同时,大大降低了训练时间。
【作者单位】:华东师范大学数学系 华东师范大学数学系
【基金】:上海市重点学科建设项目资助
【分类号】:TP18

【相似文献】
中国期刊全文数据库 前10条
1 李祥纳;艾青;秦玉平;刘卫江;;支持向量机增量学习算法综述[J];渤海大学学报(自然科学版);2007年02期
2 李忠伟,张健沛,杨静;基于支持向量机的增量学习算法研究[J];哈尔滨工程大学学报;2005年05期
3 李凯,黄厚宽;支持向量机增量学习算法研究[J];北方交通大学学报;2003年05期
4 杨森,徐海涛,柴乔林;应用支持向量机实现增量入侵检测[J];计算机工程与应用;2004年27期
5 程学云;吉根林;彭志娟;;基于SVM的信息融合新方法[J];计算机应用研究;2007年12期
6 张英,苏宏业,褚健;基于ISVM的软测量建模及其在PX生产中的应用研究[J];控制与决策;2005年10期
7 刘晔;王泽兵;冯雁;古红英;;基于增量支持向量机的DoS入侵检测[J];计算机工程;2006年04期
8 张曦煌;须文波;;基于增量学习的超球支持向量机设计[J];计算机工程与应用;2006年13期
9 孔波;刘小茂;张钧;;基于中心距离比值的增量支持向量机[J];计算机应用;2006年06期
10 孙晋文;肖建国;;基于SVM文本分类中的关键词学习研究[J];计算机科学;2006年11期
中国重要会议论文全文数据库 前10条
1 张健沛;李忠伟;杨静;;一种基于多支持向量机的并行增量学习方法(英文)[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
2 赵莹;万福永;;支持向量机的增量学习算法及其在多类分类问题中的应用[A];第25届中国控制会议论文集(下册)[C];2006年
3 林杰华;张斌;李冬森;宋华茂;余志强;王浩;;支持向量机在电力客户信用评级中的应用[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年
4 蒋铁军;张怀强;李积源;;多变量系统预测的支持向量机方法研究[A];管理科学与系统科学研究新进展——第7届全国青年管理科学与系统科学学术会议论文集[C];2003年
5 黄淑云;孙兴玉;梁汝萍;邱建丁;;基于小波支持向量机预测蛋白质亚细胞定位研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
6 谢湘;匡镜明;;支持向量机在语音识别中的应用研究[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
7 涂冬成;薛龙;刘木华;赵进辉;沈杰;吁芳;;基于支持向量机的鹅肉肉色客观评定研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年
8 杨凌;刘玉树;;基于支持向量机的坦克识别算法[A];第三届全国数字成像技术及相关材料发展与应用学术研讨会论文摘要集[C];2004年
9 师旭超;巴松涛;;基于支持向量机方法的深基坑变形预测[A];科技、工程与经济社会协调发展——河南省第四届青年学术年会论文集(上册)[C];2004年
10 张军;;支持向量机方法在地下水位干扰排除中的初步应用[A];2007年地震流体学术研讨会论文摘要集[C];2007年
中国重要报纸全文数据库 前10条
1 课题主持人 李心丹 课题协调人 上海证券交易所 施东晖 傅浩 课题研究员 宋素荣 查晓磊 宾红辉 张许宏 郭静静 黄隽 南京大学工程管理学院;内幕交易与市场操纵的行为动机与判别监管研究[N];中国证券报;2007年
2 李水根;计算机详解配伍与药效关系[N];健康报;2005年
3 清华大学 苏光大;非接触式人脸识别技术[N];计算机世界;2006年
4 YMG记者 李仁 通讯员 曲华明 孙运智;我市九项目进入省“盘子”[N];烟台日报;2010年
5 上海大学理学院教授、副院长 陆文聪;酷爱化学 孜孜以求[N];中国化工报;2006年
6 ;选择合适的数据挖掘算法[N];计算机世界;2007年
7 周颖;王米渠与中医心理学[N];中国中医药报;2006年
8 记者 耿挺;蛋白质功能算出来[N];上海科技报;2007年
9 记者 张云普通讯员 全攀峰 安强强;大庆物探深度域地震资料岩性解释技术获得五大突破[N];中国石油报;2008年
10 本报记者 冯治恩;敢与“雷公”试比高[N];铜川日报;2008年
中国博士学位论文全文数据库 前10条
1 秦玉平;基于支持向量机的文本分类算法研究[D];大连理工大学;2008年
2 李忠伟;支持向量机学习算法研究[D];哈尔滨工程大学;2006年
3 王洪波;单分类支持向量机的学习方法研究[D];浙江大学;2012年
4 杜小芳;基于CPFR的农产品采购模型研究[D];华中科技大学;2005年
5 刘育明;动态过程数据的多变量统计监控方法研究[D];浙江大学;2006年
6 栾锋;支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究[D];兰州大学;2006年
7 孙薇;市场条件下抽水蓄能电站效益综合评价及运营模式研究[D];华北电力大学(河北);2007年
8 常群;支持向量机的核方法及其模型选择[D];哈尔滨工业大学;2007年
9 朱燕飞;锌钡白回转窑煅烧过程智能建模研究[D];华南理工大学;2005年
10 田英杰;支持向量回归机及其应用研究[D];中国农业大学;2005年
中国硕士学位论文全文数据库 前10条
1 冯杰;慢时变对象的支持向量机建模与在线校正方法研究[D];东北大学;2009年
2 刘艳伟;支持向量机方法在感潮河段洪峰水位预报中的应用[D];浙江大学;2010年
3 杨镭;支持向量机算法设计及在高分辨雷达目标识别中的应用[D];国防科学技术大学;2010年
4 童振;基于支持向量机的电解液成分预测[D];东北大学;2008年
5 聂小芳;模糊粗糙集与支持向量机在煤与瓦斯突出预测中的应用研究[D];辽宁工程技术大学;2009年
6 鄢常亮;基于支持向量机的高炉向凉向热炉况预测研究[D];内蒙古科技大学;2010年
7 韩叙东;基于支持向量机的水电故障分类器的设计与实现[D];东北大学;2008年
8 朱耿峰;支持向量机在冲击地压预测模型中的应用研究[D];山东科技大学;2010年
9 王奇安;基于广泛内核的CVM算法研究及参数C的选择[D];南京航空航天大学;2009年
10 张永新;基于支持向量机和遗传算法相结合的模拟电路故障诊断方法研究[D];东北大学;2009年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026