A Real-time Deep Convolution Image Recognition Method Based on Data Mining
【摘要】:The traditional convolution neural networks(CNN) usually have slow target recognition speed due to its complex models and computational complexity.To improve the recognition speed,two mining data methods are employed to optimize the deep convolution recognition structure in this paper.Features of image which are obtained by deep CNN are firstly screened based on the dispersion ratio algorithm then genetic algorithm is adopted to get less useful features.These data mining methods greatly reduce the feature dimensions so that the recognition computations are reduced tremendously.To verify this idea,synthetic aperture radar(SAR) images are recognized by the proposed models.The correct recognition rate and the complexities of the proposed method are analyzed and compared to the traditional CNN.The experimental results show that the correct recognition rate gets better and the complexities reduce immensely so the target recognition speed is greatly improved.
|
|
|
|
1 |
Tsering Shrestha;[D];湖南大学;2006年 |
2 |
巴雅尔;[D];内蒙古师范大学;2012年 |
3 |
Antoine GAMBI;[D];北京邮电大学;2017年 |
4 |
Boakye-Yiadom Adwoa Agyeiwaa;[D];西南科技大学;2020年 |
5 |
Hamza Mehdi Khan;基于神经网络的SAR图像船舶识别[D];上海交通大学;2019年 |
6 |
温研东;基于稀疏表示与深度学习的人脸识别研究[D];华南理工大学;2016年 |
7 |
Kim JungTae(金正泰);[D];华东理工大学;2015年 |
8 |
郭姗姗;澳大利亚职业学校先前学习认定研究[D];西南大学;2008年 |
9 |
郑献春;基于梯度导数的人脸识别的研究与实现[D];西安电子科技大学;2011年 |
|